Improving quantum gate fidelities by using a qubit to measure microwave pulse distortions.
نویسندگان
چکیده
We present a new method for determining pulse imperfections and improving the single-gate fidelity in a superconducting qubit. By applying consecutive positive and negative π pulses, we amplify the qubit evolution due to microwave pulse distortions, which causes the qubit state to rotate around an axis perpendicular to the intended rotation axis. Measuring these rotations as a function of pulse period allows us to reconstruct the shape of the microwave pulse arriving at the sample. Using the extracted response to predistort the input signal, we are able to reduce the average error per gate by 37%, which enables us to reach an average single-qubit gate fidelity higher than 0.998.
منابع مشابه
Quantum-control approach to realizing a Toffoli gate in circuit QED
We study the realization of a Toffoli gate with superconducting qubits in a circuit-QED setup using quantum-control methods. Starting with optimized piecewise-constant control fields acting on all qubits and typical strengths of XY -type coupling between the qubits, we demonstrate that the optimal gate fidelities are affected only slightly by a “low-pass” filtering of these fields with the typi...
متن کاملAnalytical approach to swift nonleaky entangling gates in superconducting qubits
We develop schemes for designing pulses that implement fast and precise entangling quantum gates in superconducting qubit systems despite the presence of nearby harmful transitions. Our approach is based on purposely involving the nearest harmful transition in the quantum evolution instead of trying to avoid it. Using analytical tools, we design simple microwave control fields that implement ma...
متن کاملDynamical decoupling and dephasing in interacting two-level systems.
We implement dynamical decoupling techniques to mitigate noise and enhance the lifetime of an entangled state that is formed in a superconducting flux qubit coupled to a microscopic two-level system. By rapidly changing the qubit's transition frequency relative to the two-level system, we realize a refocusing pulse that reduces dephasing due to fluctuations in the transition frequencies, thereb...
متن کاملFast universal quantum gates on microwave photons with all-resonance operations in circuit QED
Stark shift on a superconducting qubit in circuit quantum electrodynamics (QED) has been used to construct universal quantum entangling gates on superconducting resonators in previous works. It is a second-order coupling effect between the resonator and the qubit in the dispersive regime, which leads to a slow state-selective rotation on the qubit. Here, we present two proposals to construct th...
متن کاملnt - p h / 05 09 00 1 v 1 1 Se p 20 05 Locally observable conditions for the successful implementation of entangling multi - qubit quantum gates
The information obtained from the operation of a quantum gate on only two complementary sets of input states is sufficient to estimate the quantum process fidelity of the gate. In the case of entangling gates, these conditions can be used to predict the multi qubit entanglement capability from the fidelities of two non-entangling local operations. It is then possible to predict highly nonclassi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 110 4 شماره
صفحات -
تاریخ انتشار 2013